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THE TURBULENTHEATFLUX IN LOWMACH NUMBER FLLOWS
WITH LARGE DENSITY VARIATIONS

Peter J. O’'Rourke and L.ance R. Collins
Theoretical Division, Group T-3
l.os Alamos National L.aboratory
l.os Alamos, New Mexico 87545

L. INTRODUCTION: THE DIRECTED ENERGY FLUX

This paper is concerned with a physical effect of fundamental importance
for the modeling of turbulence transport in flows with large density variations.
The effect occurs because the interaction of pressure and density gradients gives
rise to a turbulent heat flux, which we call a directed flux, that is not accounted
for in turbulence models for constant density flows. To see how this flux arises, it
ic perhaps best to consider an example of Rayleigh-Taylor instability, as depicted
in Fig. 1. A heavy, cold gas overlays a light, hot gas in a box with a gravitational
acceleration in the negative z-direction. The induced hydrostatic pressure gradi-
ent accelerates the light gas into the heavy gas and causes the instability and
mixing. The velocities averaged across a horizontal plane are in the z-direction,
and because the heavy gases are falling, the mass-averaged velocities in the
mixiug region will be negative. Relative to a surface moving downward with the
mass-averaged velocity, there will be a net upward flux of energy. This is
because although the mass flux of light gas crossing the surface upward equals
the mass flux ot heavy gas crossing downward, the light gas, being hotter, carries
with it more energy per unit mass.

This upward energy flux is the directed flux. In the example of Fig. 1, this
energy flux s in the direction of the negative of the temnperature gradient, just as
given by the laminar Fourier heat conduction law. If after some time we were to
turn the box ovear so that the light gas overlay the heavy gas, to the 2xtent that
the two gaces had not already mixed on the molecular Kevel, there would be an
urmixing in which the ligh. gas would separate from the heavy gas. Inthis
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unmixing process, the directed heat flux would be upward, in ihe direction of the
mean temperature gradient and opposite the direction given by the Fourier heat
conduction law. This phenomenon has thus been called countergradient diffu
sicn.! It cannot be predicted by turbulence models that use gradient transport, or
a Fourier-like law, to describe turbuient heat transport. [n our example, the tur
bulent hea! flux ¢” is in the direction opposed to the pressure gradient, rather
than the temperature gradient. We shall see that taking ¢ ~ — Vpis often more
realistic for turbulent flows.

Between single-phas?, two-density turbulent flows and two-phase flows
there is an analogy that we will exploit in our turbulence modeling. This analogy
will be used in Eleing to formulate the equations and in developing closure
approximaticns for some of the terms. In two-phase flow modeling, which has
received much attention within the last ten years2.3 separate mass, momentum,
and ene eguations are kept for each phase, and these equations are coupled
through fu lgynctxons that give tﬁe exchange rates of mass, momentum, and energy
between the phases. Following Besnard, Harlow, and Rauenzahn,4 we will use
an alternative, analogous formulation. In place of two mass equations, we will
keep an equation for the mean density and one for density fluctuations. In place
of two momentum equations, we will keep a mean momentum equation and an
equation for mean velocity differences associated with fluid elaments of differing
density. We use this second formulation because it allows for the possibility of
modeling not just two-density flows, but the flows with a spectrum or densities
thatoften occur in practical applications.

Two physical examples, one of two-phase flow and one of single-phase flow
with density variations, serve to illustrate the analogy and another sitvation in
which countergradient transport can arise. In both examples, pressure gradients
are responsible for centrifuging lighter material inward toward the centers of
rotating flows. In a two-phase bubbly flow, this effect has been observed in the
vortices in the wake of an obstacle.$ In smgle phase flow, it is probauly responsi
ble for the experimental results of Wahiduzzaman and Fer :son.8 "[yhe experi
menters measured the radial temperature profiles in an axnsymmetru. swirling
flow in a constant volume cylinder. The experimentally measured temperatures
are plotted at four different times as the circles in Fig. 2. The lines are computed
temperature profi'es using the KIVA code? with a k-t turbulence model8 and
gradient heat transport with a turbulent Prandtl number of 0.9. It can be seen
that a hot region i, the center of the cylinder persic ‘s much longer in the experi
ment than in the calculation, showing the large vrrors that can arise when a
gradient heat transport approximation is used.

The phenomenon oF countergradient transport in single-phase flows was
recognized seven years ago in research on the structure of turbulent premixed
flarnes.! In retrospect, it is easy to see how this phenomenon arises. Figure 3
depicts schematically a planar turbulent premized fleme with velocities showa in
the frame of reference oFthe flame. Mass conservation and the fact that the com
bustion is nearly isobaric together imply that the hot product gas velocities will
be larger than those in the reactants. g/lmnentum conservation thep implies Lh.\t
the pressure in the products will be 'ower than in the reactants. Since the dir
ected heat flux is in the direction opposed to the pressure gradient, this heat flux
will be from the coider to the hotter gases; that is, it will be countergradient
transport.

Two approaches have been used for :nodeling turbulent premixed flames  a
single phase formulation and a two-phase fnrmu.fatmn In wne single pnase ior
mulation of Bray, Moss and Libby 1.8-11 (BMI, formulation), equations are kept
for the mean product gas concentration, the mean momentum, the turbulent
Muxes of these quantities, and for the dissipation rate of turbulent kinetic eneryry
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Fig. 3. Schematic depiction of a turbulent premixed flame.

Spalding!2 utilizes a two-phase formulation, retaining mass, momentum, and
energy equations for each phase. Spalding!2 assumes that the major source of
mixing is due to the difference between the mean velocity of the phases and thus
ignores the turbulent kinetic energy within each phase. The BML formulation
accounts for both sources to the turbulent kinetic energy. In principle, the equa-
tions of one formulation should be derivable in terms of those of the other, al

though to our knowledge such a derivation and comparison have not been made.
In this paper some closure approximations are proposed, based on a derivation of
the single-phase equations from two-phase equations. Only the BML formulation
has been compareg with experimental measurements of turbulent flames,!! and
satisfactory agreement was obtained.

In practical applications of turbulent combustion, other physical effects that
cause mixing and ur.mixin% are superimposed on the pressure drop across the
flame. At Los Alamos, we have been involved for the past twelve years in the
numerical modeling of combustion in internal combusti n engines.7.13-16
Figure 4 illustrates some of the complexities of the turbulence/chemistry inter-
action in an engine burning premixed charges. A turbulent premixed tlame is
pro a%&ting away from an ignitor located near the center of t.ie cylinder head
wall. Mach numbers are small, and thus the mean pressure is ncarly uniform in
spacel? and changing with time due to piston motion, combustion, and wall heat
loss. Near the top of its motion, the piston, and the axial flow velocities in the
combustion chamber, decelerate. This causes a small positive axial pressure
gradient and induces Rayleigh-Taylor instability and mixing where the flame is
propagating downward in the axial direction. This same pressure gradient will
cause a differential axial acceleration of the hot products and cool reactants and
gromote Kelvin-Helmbholtz instability where the flame is propagating radially.
Swirl, a nearly symmetric rotational motiun of the burning gases, is introduced
by engine designers to promote mixing but will have two competing effects in the
engine of Fig. 4. Swirl indtced shears will enhance turbulence and mixing, but
the radial pressure gradient ccused by the swirl will, as in the experiments o/
Wahiduzzaman and Ferguson,8 cause countergradient transport and suppress
mixing. [tis important to point out that among these various turbulence effects,
only thuse associated with shear instability and mixing are accounted for in
current engine models.

In predicting turbulence in internal combustion engines and other practical
combustors. vne cannot use two-phase models or single phase equations for two
density flows. This is because within the reactants uns products there will be
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Fig. 4. The turbulence/chemistry interaction in an internal combustion engine.

distributions of density. In the engine of Fig. 4 density differences will arise due
to wall heat tran-fer and due to entropy dig'erences in the product gases of this
confined burn.18 In other combustors density distributions are caused by charge
non-uniformity and spray vaporization.

In the next secticn we derive preliminary equations for a turbulent fluid
with large density variations. Our aim is to develop a model that has three
attributes:

(1) the model can predict mixing and unmixing due to shear instabilities and
pressure-density gradient interactions;

(2) the model can account for a distribution of densities; and

(3) the model equations can be efficiently integrated in two and three
dimensions.

The second attribute precludes use <. two-phase flow equations, although investi-

gation of the two-density !'mit wi'l yield valuable information. The third attri-

bute precludes use of the Reynolds stress equations, e<pecially in three dimen

sions. It seems afpropriate to seek a simple one- or two-equation exiension of

popular two-equation models for turbulent shear flows.

[I. THE EQUATIONS

A. _Overview

e first derive equations for the average density p and the Favre-averaged
velocity u and enthalpy h. Using the low Mach number assumption, we relate
the turbulent heat flux ¢/ to the difference between the average velocity u and
the Favre-averaged velocity u. We denote this difference u — u by a, and the
transport equation for a is derived and discussed. Closure approximations for
terms in the a equation are postulated based on the analogy between two-phase
flows and single-phase, two-dcnsity flows. A comparison between the single-
phase and two-phase equutions suggests that the fluctuating stress terms in the
a equation are primarily uss‘wiuwg with the decay of a. We present an algebraice



closure apprcximation for a that results in a heat flux that is the sum of contribu-
tions due to gradient and directed transport. Our a-equation is compared with
similar equations in the literature.

B. The Equations of a Low Mach Number Flow with Large Density Variations
For the low Mach number flow of a single componnnt ideal gas with large
density variations, the equations are the following:19

d

£ + Vopu) =0, (continuuty) (D

ad

dpu , 2)

—dtﬁ + V-ipuu) + Vp=V.0 + pg, (momentum) (

dph dP

— + V.puh)= — + @, (enthalpy) (3)

" p ” Q py

P (I)Mw = pRT , (thermalequation of state) (4)
and

1
T = J cp(n)dt, (caloric equaton of state) (35)

where o is the laminar viscous stress tensor, Q is the volumetric rate of heating
due to such sources as chemical reaction or divergence of the laminar heat flux,
I>(¢) is the volume average pressure of the system, p(x,t) is the pressure fluctua-

tion from the mean value P(t), and M, is the molecular weight opthe gas. For low
Mach number flows Ipl/PP = M?, where M is the Mach number.17 From these
equations one can derive an equatmn for the divergence of the velocity field: 19

Vou = — — 4 (6)
" yP dt ' P «
In an open flow system, P is just the ambient pressure; for flow in a closed volume
V, an equation for P can be derived by integrating (6) over V:

1 JdP 1 dV N
—_—— D e — = — 4 Y_._.__ — { Q dv (7)
v dt vV di Y Voiy

C. _The Averaged Equations

In our turbulence equations we will use bsth unweiﬁhbed averaged quanti
ties and Favre (density-weighted) averaged quantities. The unweighted averaye
and Favre average of a quantity ¢ are defined respectively by

pix D ;/—I:— N b ix, 0 (8)

3

and
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plx, 0= = — N pix.0¢ x. 0 (9)
px,n NE =~

where ensemble averages are used, ¢, being the value of ¢ in a particular

experiment a« and NE being the number of experiments in the ensemble. The
fluctuatioas from these averages are denoted by

¢ = - ¢ (10)

P b — ¢ (11)

where we drop the subscript a on the fiuctuations.
By averaging Eqs. (1)-(5) we obtain the turbulence equations:

d -

—e+v-(pu):0, (12)

ot

(j—F)t—li+V~(E>GG)+Vp:V-R+V‘;+Eg, (13)

d

r);).il. -~~~ dﬁ - h

—— +V.phul= — +Q -V-¢", (14)

dat P dt ? ¢

Py o= pRT (15)
and

ool .

h:( (‘p(L)dl, (16)

1

where the Reynolds stress R is given by — pu’u” and the turbulent heat flux ¢# is
given by pu'?i" In deriving Eq. (16) we have assumed that the characteristic tem-
peratures over which S}Fniﬁcant changes in ¢, occur, are much larger than char-
acteristic temperature fluctuations T "

[). An Alternative Exprassion for ¢4
An alternative expression for the turbulent heat flux can be derived from

the averaged and unaveraged equations of state. Subtracting (15) from (4)
resultsin

PIM GRT - pRT - pRT™ v »'RT (17)
We now assume that

LT (1)



Under this assumption the left-hand side of (17) can be neglected, and we obtain

'[\":_Tp—" (19)
P

wherein temperature and density fluctuations are directly related.

The assumption (18) requires some discussion. It will cartainly be true for
an open flow system, because the P is always the ambient pressure and never
fluctuates. In a closed system, such as in internal combustion engine cylinder,
there can be significant fluctuations in the mean pressure P, primarily due to
fluctuations in the chemical heat release rate. In an internal combustion engine
these are referred to as cycle-to-cycle variations, and there is currently some
debate2? whether or not these cycle-to-cycle variations should be called turbu-
lence. We recommend that in performing the averages {3) and (9) one should use
only experiments for which the mesan pressure history P(t) is nearly equal to P(¢).
When this limiced ensemble average is used, the assumption (18) is automat-
ically satisfied.

Subtracting (16) from (5) gives

T+71" - )
h" = J cwdv=c(T)T", (20)
P P

-~

T

where again we use the assumption that ¢, varies little for temperature changes
equal to T. Using (20) and (19) in the defining ‘ormula for ¢4 gives

h

" = pu'n’
BTy e
= Ecp(f) 7:a (21)
where

a=u' =u-u. (22)

Equation (21) is the alternative expression we seek for the heat fiux. It says
that ¢4 is proportional to a quantity a that can be loosely thought of as the differ
ence between the volume-averaged and mass-averaged velocities. In a two-
density or two-phase system, a is proportional to the difference between the veloc
ities of the two phases. In order to investigate further the nature of the turbulent
heat flux, we must derive a transport equation for a.

E. The Transport Equation for . '

The transport equation for a is obtained by subtracting the equation for the
mass-averaged velocity @ from that for the volume-averaged velocity u. The
result is




sa R T B
— + u-Vu —u~Vu+("-—:)VP* - Vp
at Y p P
1 11 -
:—:V-R+(——:)V-o+—v-o' (23)
p - P P Y

As an aid in modeling some of the terms in Eq. (23) we will derive an
a-equation for two-phase flows and compare this with Eq. (23). It will turn out
that all of the terms in Eq. (23), with the exception of those associated with the
fluctuating stresses p' and o', will be duplicated exactly by terms in the
a-eguation for two-phase flows. The terms I’p Vp' and 1/p V - ¢’ are then associ-
ated with terms in .he two-phase a-equation that arise due to momentum
exchange between the phases. With this compariscn as a guide we postulate a
model for the fluctuating stress terms.

We now briefly introduce the equations for two-phase flow. For more details
the interested reader should consult Refs. 2 and 3. For simplicity we restrict our-
selves to the flow of two incompressible phases. The continuity equations for each
phase are

ap.a
=1
! +V-lpaui=J (24)

at 21

and

dp,a,

2 —2 ,
+V-lpyau) = J“Z = —-J21 ‘ (25)

at

In these equations p; are the microscopic (or conditional) densities, which we
assume to be constant; ui are the average velocities within each phase (where the
“t” next to the overbar indicates a conditional average in phase 1); a; are the vol-
ume fractions of each phase (a1 + a2 = 1); and J2) is the rate of mass transfer per
unit volume from phase 2 to phase 1. The momentum equations for each phase

are

-1
,0,u —1=1 - - (26)
+ V-(plalu uj+ Cl‘Vp =pag+ alv- g + V-(anl) + P “

a
and

—)

<}p2(12u“ ——9 . -— { r)7)
+ V-(p,_,ozu ui+taVp =pagt a,‘)V- g+ V-mle) - Pgl <

3t

As is commonly done in two-phase flow modeling,2 we assume here that the

phases are in local pressure equilibrium; that is pl = p2 = p. The conditional
Reynolds stresses R, are given by
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_—

- H
R =-o0(n-uju-u)

The rate of momentum exchange per unit volume from phase 2 to phase 1 is
denoted by Py). - .
Average flow variables fare related to the averages within each phase f* by

- 1 -2 (28)

zal/“' + 02/'“ _

Thus, for example,

(29)

P T AP T AR,
and

-—l —

171 272

By using the relations (29) and adding Eqgs. (24) and (25) and Egs. (26) and (27) we
obtain the same total mass and momentum equations, Egs. (12) and (13), that we
have previously derived, when it is realized that

R = alR‘ + a.ﬁ,R,2
_1 ~ —: -~
—plal(u —ullu ~ uj

- . =2 -
- p,au” —uu —u (30)

Thus the mass-averaged velocity equation is

‘E+G-va+_l_v;=l=v-o’+'=v.ﬂ+g. (31)

o p P P

To obtain the a-equation, we will subtract (31) from an equation for u,
which will now be derived. By dividing (26) by pj and (27) by g2 and summing the
results, we obtain

Ju —1=1 —2— T~
— +V-(guu +a‘uu4b+(—)vp
o 1 2 P
T _ a, a, 1
:g+(~)vo+V(——Rl+-5R2)+P,,l<———) (32)
P Py ) T Py

it can be seen that
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a a

—1—1 -2 ) 2 —

Vijauu +tauu —— R - —R,| =V-(uu)=u-¥u + uV-.u (33)
2 P, p, 2

Using (33) in (32) and subtracting (31) yields the two-phase a-equation:

Ja -~ l- 1y -
— + u-Yu —u-Yu+uV.u +(— - :)Vp
Jt o} p
: 11 - 1
smivere(—ozpvaer, [~ =) (34)
p P p TP Py
Comparing (34) and (23). we see they agree if
1 1 1 1
-Vp' = —-V.0' = u¥.u +P,)‘(———)‘ (35)
p p e, b,

This is the relationship we seek between the fluctuating stress terms and the two-
hase momentum trar .’er terms. To cbtain closure we need to postulate a form
or P21, and we will investigate expressions employed in two-phase flow

modeling.

F. _ Expressions for the Momentum Exchange Rate in Two-Phase Flows
For a dispersed phase 2 of equal-sized spherical particles of radius r in a
continuous phase 1, an expression for the momentum transfer term is2!

P18y —p = = —y —
——Ju —u|lm —u)+dJd u (36)
D, 21

3
P, =-c

8
inus, P2 has two terms -- one due to aerodynamic drag and one due to mass
exchange. This form of the mass exchange term assumes there are no circulation
velocities witkin the particles. Equation (36) has theoretical justification2! when
p2 > > p; and velocities within each phase are sharply peaked near their mean
values. [t neglects virtual mass effects, Barset history effects, and particle dis
tortions and oscillations.42

Motivated by Eq. (36), modelers usuall, use a similar expression for all two-
phase regimes:2

Po=K@ —u b d, (37
21 21
where K is called the drag function and s is some average interface velocity. The
quantity K is a positive function of py, py, ay, ag, |u? - &lT. and an entitﬁ size r.

If we accept Eq. (37) then one is led to the postulate that the fluctuating
stress terms in the a equation (23) contribute to Lge decay of a. Indeed one can
show that for a two-phase flow

aa tp, —p)
[ o= :
“ = {u - u, BLY

9]
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and (38), in conjunction with {35) and (37), gives

1 1 1 1\ —
-Vp'==-V.0' = uV.u +K'a+J,,l(———->u‘, (9)
p p ", b
where
K = —2— K
G130 Py

K hasdimensions of a frequency.

G. Final Form of the a-Equation
After substituting (39) in (23) and some rearrangement of terms one obtains

da . . 1 Ly= -~ ~ b -
— +V-.(ua +aul+ K'a +J, -——~-)u +uV-u+=Vp
o A p') pl P
1 — 1 - 1 _—
2 ==V R-V-(wu) ==zu'n"-Vp + =V-(puu"). (40)
p P P

Here we have introduced the quantity b as a dimensionless measure of the
density fluctuations:

545(%)_1 (41)

If the density fluctuations are nou too large, then b (s approximately a self-
correlation coefficient for density fluctuations:

NSRS (42)

In fact, Ref 4 uses

B (p)? (43)
as a measure of the density fluctuations. We will develop a transport equation for
b in future work.

Three further terms in (40) must be modeled. First we deal with the mass
exchange trrm. One can show from (24) and (25) that

vou ‘lm(;];":l;) (44)

and hence the fourth v d fifth terms on the left-hand side of (40)) combine to give
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S 1 I \—s 1 I o\=s ~ -
uV-u+J‘,(———>u‘:J,,l(———-)(u ~u)-uV-a (45)
MNp, by e, opy
We assume that s = 4. An assessment of the validity of this assumption must
await a precise physical interpretation of the quantity as.
Second, for the tensor u"u” one can show that for two-phase flows
— R R, (p)
u"u':—al—l-a.\—:+(l+—p——)aa. (46)
P, “p, B
where B is defined by (43) and given in two-phase flows by
B =aayp, - b, (47a)
For future reference we also note that
L (47b)
PP,
in two-phase flows. We define the volume-averaged conditional Reynolds stre.s r
by
R, R,
r—a-—fa,-; (48)

As a first approximation, and despite experimental evidence to the contrary in
turbulent flame experiments 9 we assume the conditional Reynolds stresses are

equal and isotropic. Then
(49)

where k' is related to the specific turbulent kinetic energy k = 312 by

(H0)

a
b
A transport equation for k will be developed in future work.
We also use a two-density distribution to model the triple correlation term

. (40). After some algebraic manipulation and use of the assumption (449)

e

ko= e

oo —

in E(‘

one ohtains

I (51)

;»‘;F\T - ;; {l /; v )nu
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By substituting (45), (46), (49), and (51) in (40) and using the approximation (42)
we obtain the final form of the a-equation:

daa ~ - ~ b~
— ¢t+u-YVa+aV-u+a-Vu+V.(aa)+ =V p
o P
- " -
aa V 2 1 a7, v
okt e 2(, Le T (52)
h o 3 2 b p

H. AnAlgebraic Closure Approximation

In numerical computations of multidimensional fluia flows, use of Eq. (52)
would require solving two or three additional transport equations for components
of a. Although this is not an unrealistic task for modern computers, considerable
computational efficiency would result if an accurate algebraic closure approxima
tion for a could be found. In thissection we present such an approximation based
on an assumption whese validity must be tested in cxperimental comparisons.
The resulting expression for 2 predicts gradient heat transport, hut also contains
a contribution that predicts the directecﬂ'lux arising from the interaction of pres-
sure gradients and density inhomogeneities.

The assumption ~ve make is analogous to the drift flux approximation of
two-phase flow modeling.2 In two-phase modeling this assumption i: that the two
velocity fields are so tightly coupled through the drag terms that cuaracteristic
drag times are much smaller than characterisiic flow times. For us the assump-
tion is that

u

o (53)

K >> — |
L,

where u,and L are a characteristic velocity and gradient length for the 1low,

Assuming (53) is true, order of magnitude estimaces of the terms in (52)
show all terms on the left-hand side can be neglected, except the pressure grad
ient term. On the right-! and side, the dyadic product term aa is negligible since
Eqgs. (38) and (47) show that a/b is proportionarm the velocity difference between
fluid elements of different density. The resulting equation for a becomes

| b — v 9
A - = —:fo-—k-—_—r) (5
K p 3 p

Equation (54) can be put in 2 more recognizable form if we use

Vp V'i;
p T
| b - 2 VT
W = -2 Vp - k= {hn)
0 300
In conjunction with (21), Eq. (55) gives a heat flux that is tize sum of contributions

proportional o ~Vpand —VT. The formeris the directed Qux. It goes to zero i
the absence of density fluctuations b
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The gradient iransport term in (55) looks similar to the gradient heat flux
commonly used in turbulence modeling, but there is a difference. The usual form
used for the turbulent heat flux8 is

7 (56)

where Pr.. is the turbulent Prandtl number and ¢ the turbulence dissipation rate.
Equation (56) agrees with the heat flux contribution obtained from the second
term in (55) if tﬂ drag time associated with fluid elements of differing density
equals the turbulence dissipation time. For the momentum exchange function
(36) it can be seen that the drag time is

L% 57)
r —l —
K Py o - uz[

when 1) is approximately unity. On the other hand, the turbulence dissipatioa
time is

I =
:

~ (18)

o] A

)

& ¢

where L is a turbulence length scale. Equations (57) and (58) agree if r =~ L, k! =~
|al — a2 and p; = pg, but when these equalities are violated more accurate beat
fluxes could be obtained using a drag time, and not a turb.:lence dissipation time,
to evaluate the heat flux vector.

1. COMPARISON WITH OTHER WORK

In this section we compare our a-equation with two others in the literature.
[n the BML formulation for turbulent flames,!? an equation is kept for the tur
bulent flux of reaction progress variable ¢. Our quantity a isjust a constant times
the turbulent flux of ¢:

. P .
[)U'a" - £ (59)

where p, and p, are the reactant and product densities. Two differences are ob
served %etween the a-equation one derives from the BML formulation and ours.
First, in the BML formulation it is not assumed that the conditional Reyaolds
stresses within each phase are equal and isotropic. An equation for the uncondi
tional Reynolds stress R is retained, and the difference between the conditional
Reynolds stresses is mode'ed using R. Accordingly, the double and triple correla
tion terms on the right-hand side of (40) are modeled in a more detailed fashion,
although the authors observel!® that “this modeling is generally not found to be
too critical to the predictions of first- and second mement unconditional
quantities.”

The second difference is in the modeling of the fluctuating stress terms,. 'The
authors follow Launder2d and model
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-‘—':2(‘ ‘iﬂ—(‘lﬂ'vu (60)
k 2,

where ¢y, and cg, are empirical constants. Comparison with Eq. (39) shows that
these models have in common the decay of a term and that these would be the
same if

K =2¢c, = . (61)

Besnard, Harlow, and Rauenzahn4 keep equations for both the turbulent
heat flux and the quantity A = p’u’, which isrelated to a by

A= - pa, (62)
since they are interested in more complicated equations of state in which the
relation (19) does not hold. Their a-equation differs from ours in several respects.
An equation for the Reynolds stress is retained and used in modeling the firs:.
term on the right-hand side of (40). The triple correlation is broken into two
terms

p'u'u’ = —-2588 + puu’ (63)
and the lz :ter term is modeled by a gradient diffusion of a. There is a4 decay of a
that arises solely from the viscous stress terms.

IV. SUMMARY AND FUTURE WORK

We have derived a transport equation for the quaatity a, which is the differ
cnce between the volume- and mass-averaged velocities and is simply related to
the turbulent heat flux ¢4, Using this equation and an assumption analogous t»n
the drift flux approximsetion of two-phase flow modeling, we¢ have obtained an
algebraic closire relation for ¢+ that exhibits fluxes due to directed transport
proportional to —Vp and due to gradient transport proportional to - VT.

Much work remains to be done before the mode? can be used in predictive
calculations of low Mach number flows with large density variations. g‘he equa-
tion for a involves an additional scalar b that i; a measure of the density fluctua
tions. An equation for b must he derived and terms in it modeled. We hope to use
the a - and b-equations in conjunction with a k - ¢ turhbulence model. The k- and ¢-
equations must be reexamined to see what modifications are needed when the
flows have large density variations. When mass transport is important, such as
in many combustion problems, expressions for the turﬁulent mass flux must be
developed.

In an effort to test some of the modeling assumptions we are currently
writing a one-dimensional code that solves the turbulence equations of this
uper Computed results will be compared with experimental measurements of
tayleigh Taylor instability, turbulent premixed flames, and flows with centri
fuging and density varicztions. These results and extensions of the model will be

reported in future publications.
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